Драйвер для maple 003



Драйвер для maple 003

Давно подумывал о переходе на 32 битные ARM контроллеры, так как 8 битного контроллера
мне уже стало не хватать и вот настал этот день. Наконец то у меня в руках отладочная плата Maple mini
в основе которой контроллер ARM Cortex-M3 STM32F103.

Почему я решил перейти на этот контроллер? Потому что стоимость микросхем STM32F103 даже
немножко дешевле чем Atmega328, но разница в характеристиках колоссальная.
Например на Ebay стоимость чипа STM32103 105руб.
А стоимость чипа Atmega328 -118руб.

Характеристики
Для подключения к компьютеру не требуется USB-UART мост
Ядро ARM Cortex M3
Разрядность 32 бита
Тактовая Частота 72мГц
Оперативка 20кб
Флеш память программ 128кб
Входы/Выходы 34пина (GPIOs) из них
12 ШИМ(PWM) с разрешением 16 бит
9 аналоговых входов (АЦП) с разрешением 12 бит, 2АЦП(ADC) время преобразования 1мкс
2 SPI
2 I2C
3 USART
1 CAN
7 каналов прямого доступа к памяти (DMA)
4 таймера
встроенные часа реального времени 32кГц с возможностью калибровки
для питания часов от батарейки есть пины Vbat+ и Vbat-
Для внешнего прерывания можно использовать любые GPIO пины, но одновременно
могут использоваться только 16 пинов и только одного порта А или В

Схема Maple mini

Переходить не торопился потому что понимал что на изучение нового контроллера и его особеностей, потребуется много времени
Но когда HiddenPilot дал ссылку на контроллер и компилятор к нему, который был заимствован у Arduino, то после этого я понял
что можно безбоязненно переходить на STM32

Первое включение и установка драйверов
Процесс установки драйверов не стандартный, так как устанавливается два разных драйвера
Сначала нужно cкачать и распаковать Maple IDE
Подключаем контроллер к USB ПК
Потом заходим в диспечер устройств и видим устройство «Maple R3»
жмем кнопку «»обновить драйвер» и указываем путь к драйверу ..\maple-ide-0.0.12-windowsxp32\drivers\mapleDrv\serial
После успешной установки serial драйвера нужно установить еще один драйвер LibUSB. Для этого нужно перевести контроллер
в режим бесконечного загрузчика, нужно нажать кнопку сброса отпустить и сразу же нажать кнопку but=32 и и отпустить кнопку
через 2-3сек. В диспечере устройств должно появится устройство Maple 003. В свойствах устройства жмем кнопку «»обновить драйвер» и
указываем путь к драйверу ..\maple-ide-0.0.12-windowsxp32\drivers\mapleDrv\dfu

После того как драйвер установится, можете попробовать залить в контроллер тестовый код Blink
Также как и в ардуино IDE у Maple есть много примеров в папке Exemples
В основном синтакс языка программирования Maple такой же как и у Arduino.

Вам не придется переучиваться. Вот Вам пример кода Blink для Maple
Он отличается только тес что у него светодиод подключен на D33

void setup ()
<
pinMode ( 33 , OUTPUT );
>

void loop ()
<
digitalWrite ( 33 , HIGH );
delay ( 1000 );
digitalWrite ( 33 , LOW );
delay ( 1000 );
>

Источник

Использование платы STM32 Leaf Maple Mini в Windows Studio Code с PlatformIO

В данной статье рассматривается:

На плате Leaf Maple Mini зашит загрузчик позволяющий загружать нашу прошивку через USB порт, как это делается в Arduino IDE. Загрузка производится в режиме DFU mode, что требует установки драйверов VID_1EAF&PID_0003.

При подключении плата определяется системой как COM порт, но в режиме загрузки прошивки переключается в режим DFU mode.

Прежде чем пытаться что-то прошить в наш контроллер нам необходимо установить драйвер.

Установка драйверов на плату Leaf Maple Mini

Качаем набор компонентов для работы с платами STM32 для Arduino IDE

Подключаем нашу плату по USB

Переводим нашу плату в режим работы DFU mode:

Кратковременно нажимаем кнопку RESET и пока быстро мигает светодиод жмем кнопку but=32 и удерживаем некоторое время.
Или зажимаем кнопку but=32 и кратковременно нажимаем RESET и держим некоторое время.

В диспетчере задач у нас должно появиться устройство Maple 003 которое требует установки драйверов.

Распаковываем скаченный ранее архив, идем в папку

\Arduino_STM32-master\drivers\win\ запускаем от АДМИНИСТРАТОРА — install_drivers.bat, драйвер должен установиться. Жмем RESET на плате, теперь установиться драйвер COM порта.

Если драйвера не установились или плата не определяется системой, пойдем по другому пути, зашьем загрузчик сами.

Прошивка в плату Leaf Maple Mini загрузчика

Я буду зашивать с использованием ST-LINK V2, но мы так же может прошить, используя COM переходники.

Качаем и устанавливаем:

Подключаем ST-LINK V2 к плате Leaf Maple Mini:

ST-LINK V2 Maple Mini
2 SWCLK (SWD clock) D21
4 SWDIO (SWD data input/output) D22
6 GND (Ground) GND
8 3.3V VCC

Запускаем STM32 ST-LINK Utility

Переводим нашу плату в режим DFU mode см.выше.

Жмем в программе Connect

Жмем на вкладку Binary File и выбираем скачанный ранее файл maple_mini_boot20.bin

Жмем Program Verify

В открывшемся окне жмем Start

Начнется прошивка нашего загрузчика.

Теперь еще раз пробуем установить драйвера описанным выше способом.

Использование платы Leaf Maple Mini в Windows Studio Code

Запускам Windows Studio Code с установленной PlatformIO и добавляем платформы как на картинке

Создаем проект из примеров ST STM32 –> arduino-blink

Переходим в созданный проект

Правим platformio.ini

Подключаем нашу плату по USB, она определиться системой как COM порт.

Жмем 3 см. картинку. Ждем окончания заливки прошивки в плату.

Если у вас выскакивает ошибка:

Значит, вы не поставили драйвера на плату.

Дополнительно о плате Leaf Maple Mini:
Особенности микроконтроллера
  • STM32F103CBT6 in LQFP48 package
  • ARM®32-bit Cortex®-M3 CPU
  • 72 MHz max CPU frequency
  • VDD from 2.0 V to 3.6 V
  • 128 KB Flash
  • 20 KB SRAM
  • GPIO (34) with external interrupt capability
  • 12-bit ADC (2) with 10 channels
  • RTC
  • Timers (4)
  • I2C (2)
  • USART (3)
  • SPI (2)
  • USB 2.0 full-speed
  • CAN

Схема платы Leaf Maple Mini

Еще информация по данной плате Leaf Maple Mini читать

Использование в Arduino IDE читать

Конечно, использовать DFU mode для заливки наших прошивок в плату по USB не есть хорошо, лучше прошивать, используя ST-LINK V2. Так же использование библиотек Arduino для работы с платой производительности нам не прибавит.

Разработку под STM32 лучше конечно производить в STM32CubeIDE — бесплатная среда разработки от STM, полностью поддерживает STM32CubeMX

Я использую Visual Studio 2019 Community с надстройкой VisualGDB – где Visual Studio 2019 Community – бесплатна, а вот VisualGDB стоит денег. Данная связка в последних версиях прекрасно работает с STM32CubeMX

Источник

Дешевая STM32 плата + Arduino IDE UPD 17.08.2017

Хотите прокачать ваши Arduino проекты? Заставить их работать быстрее, измерения и регулировку сделать точнее, ну и добавить баги(с новыми девайсами они неизбежны). Тогда эта статья для Вас.

Arduino тема всё больше захватывает умы человечества, но рано или поздно мы встречаемся с тем, что нам чего-то не хватает, например бюджета/размеров/пиновпортов/разрядности/производительности… Как говорил один мудрый человек — «Кто хочет, тот ищет возможности, кто не хочет — ищет причины».

Хорошие люди это понимают, и потихоньку начинают приобщать STM32 к ардуино теме, ибо восьмибитные AVR микроконтроллеры, на которых основано немало ардуино плат, не всегда могут справиться с поставленными задачами.

Краткое изложение данной статьи в видео формате:

Ладно, меньше лирики и ближе к теме. В этой статье, я буду рассматривать дешёвую отладочную плату, которая основана на базе микроконтроллера STM32F103C8T6:

Для начала, сравним основные параметры STM32 платы, и её аналога по цене — Arduino Nano V3.0:

  • Рабочая частота 72 МГц, против 16 у ардуино;
  • Объем Flash памяти 64 Кбайта, против 32;
  • Оперативной памяти, она же RAM(где хранятся переменные), у STM32 целых 20 Кбайт, у ардуинки всего лишь 2;
  • Быстрый 12-ти битный АЦП, в то время как у Arduino плат, что на базе AVR микроконтроллеров(это как правило большинство) используется 10-ти битный. Это означает, что в случае STM32, функция analogRead(*); будет возвращать 0..4095 против 0..1023, что в первом случае ведёт к более точным измерениям;
  • 16-ти битный аппаратный ШИМ, против 8-ми у Arduino плат, то есть, функция analogWrite(*);pwmWrite(*); может принимать значение 0..65535, против убогих 0..255. Это позволит ещё точнее управлять нашими двигателями, сервами и прочими девайсами, которые рулятся при помощи ШИМ;
  • Аппаратная работа с USB, чем не может похвастаться не одна Arduino плата стоимостью менее 2 долларов;
  • Напряжение питания — от 2 до 3.6В(прямо таки заточено под 2 AA батарейки), против 2.7. 5В у ардуино плат;
  • Цены на момент написания статьи — 1.9 доллара против 1.8(алиэкспресс).

Очевидно, что отладочная плата на базе STM32 выигрывает по всём параметрам у Arduino Nano, исключением является разве что стоимость, но согласитесь 10 центов — хорошая цена за большую производительность, а про периферию, которой нафарширован STM32, так я вообще молчу, чего только стоят DMA или интегрированные в микроконтроллер часы реального времени.

Всё это в сумме делает данную плату крайне привлекательной во всём, кроме одного — новичку, как например мне, тема STM32 кажется слишком затратной по времени, есть целые сайты посвящённые программированию этих микроконтроллеров. А вот если подружить STM32 с Arduino IDE, то порог вхождения опускается до крайне низкого уровня. Хотя, как говорится, «В каждой бочке мёда, есть ложка дёгтя», но об этом чуть ниже.

Приступим к подготовке платы, для работы с Arduino IDE. Первое что необходимо сделать — залить в микроконтроллер специальный загрузчик, который позволит прошивать плату через аппаратный USB, причём прямо из среды разработки. Для этого необходимо перевести верхний джампер(он же «BOOT0»), в положение «1»:

Дело в том, что в STM32 с завода прошит, в так называемую системную память(system memory), специальный загрузчик, который позволяет прошивать плату через самый обычный USB to UART переходник, не прибегая к специфическим программаторам типа ST-Link V2.

Дальше нам понадобиться переходник с USB на UART. Стоит помнить, что STM32, это 3.3 В логика, совместимость с 5-ти вольтовой не гарантируется, поэтому рекомендовано использовать USB to UART, у которого есть возможность выбора режимов работы с 3.3/5В логикой. Я использовал дешёвый переходник на базе CH340G:


* как видно, производитель не стал заворачиваться со смывкой флюса, на работу, конечно, никак не влияет.

Плату подключил к USB to UART переходнику следующим образом:

G GND;
5V 5V;
PA10 TXD;
PA9 RXD.


* PA10/PA9 на плате подписаны просто как A10/A9 — эти порты являются первым аппаратным USART’ом, всего их на плате 3, так же тут 2 аппаратных I2C и 2 SPI.

Ради удобства запитал плату от 5 В, для питания от 3.3 В на плате есть пин «3.3». Внимание, 5 В может запросто вывести микроконтроллер из строя, так что уделите должное внимание подключению.

Качаем, устанавливаем и запускаем Flash Loader Demonstrator(есть в архиве к статье):

Выбираем номер COM-порта нашего переходника, в моём случае это COM43, потом нажимаем «Next»:

Так как у меня микроконтроллер новый, ещё муха не сидела на него никто ничего не записывал(разумеется кроме самого производителя), то тут по умолчанию стоит защита от чтения, программа нас предупреждает, что если нажать кнопку «Remove protection», Flash память будет очищена, то есть если бы там была какая-то прошивка — она удалится. В моём случае там ничего полезного нет, так что смело жму. Далее вижу следующее:

Так как моя отладочная плата основана на микроконтроллере STM32F103C8 — здесь 64 Кбайт Flash памяти, есть ещё STM32F103CB микроконтроллер, где в два раза больше Flash.

Дальше кликаем «Next»:

Опять «Next», и видим следующее окно:

Выбираем «Download to device» и жмём на «. «:

Меняем тип файлов на *.bin и открываем файл «generic_boot20_pc13.bin»(тоже присутствует в архиве) который можно взять из проекта STM32duino-bootloader.

Дальше кликаем на кнопку «Next», после прошивки загрузчика мы увидим зелёный свет:

Потом надо скачать, для среды разработки Arduino IDE, специальное STM32 ядро(так же есть в архиве к статье). Тут есть один нюанс, на момент написания статьи, ядро не работает на версиях среды разработки свыше 1.6.5, у меня стоит 1.6.5-r5 которую скачал тут.
Проверенна работоспособность ядра на Arduino IDE версии 1.6.9.

Дальше разархивируем содержимое по адресу Мои Документы\Arduino\hardware:

В моём случае полный путь выглядит вот так — «C:\Users\RSK\Documents\Arduino\hardware»

Разумеется, что система устройство определить не сумеет, поэтому надо ещё установить драйвера на плату. Заходим в папку «Мои Документы\Arduino\hardware\Arduino_STM32\drivers\win»(или «drivers\win», в случае архива к статье), и запускаем от имени администратора файл «install_drivers.bat»:

После этого верхний джампер(тот что «BOOT0»), переводим в положение «0» и подключаем плату к компьютеру через microUSB кабель:

Она должна в диспетчере устройств определиться или как «Maple DFU» или «Maple Serial (COM*)»:

Не совсем понятно почему после первого подключения плата определяется по-разному, на разных компьютерах, но не суть, приступаем к настройке Arduino IDE.

Запускаем среду разработки, дальше Инструменты -> Плата -> Boards Manager:

Здесь нужно установить ядро для платы Arduino Due. Выбираем последнюю версию и нажимаем «Install»:

Потом Инструменты -> Плата -> «Generic STM32F103C», дальше Variant: «STM32F103C8 (20k RAM. 64k Flash)», Upload Method: «STM32duino bootloader», Порт — номер COM-порта платы, вообщем всё как на скрине:

Всё, плата готова к прошивке и программированию в среде разработки Arduino IDE. Давайте прошьём какой-то скетч из примеров, которые «вшиты» в ядро, заходим Файл -> Папка со скетчами -> hardware -> Arduino_STM32 -> STM32F1 -> libraries -> A_STM32_Examples -> Digital -> Blink:

Классический «Hello World» в мире микроконтроллеров. Изменяем PB1 на PC13, так как светодиод, что на плате, подключен к этому порту:


* К стати, загорается он по низкому уровню на ножке PC13.

Нажимаем кнопку «Вгрузить», после прошивки среда разработки выдаст что-то типа:

«Done!
Resetting USB to switch back to runtime mode
error resetting after download: usb_reset: could not reset device, win error: Не удается найти указанный файл.».

Но прошивка то загрузилась успешно, хотя не всегда так, иногда Arduino IDE выдаёт другие сообщения.

Когда видите, сообщение типа:

«dfu-util — © 2007-2008 by OpenMoko Inc.
Couldn’t find the DFU device: [1EAF:0003]
This program is Free Software and has ABSOLUTELY NO WARRANTY»

Это означает, что плату прошить не удалось.

Когда среда разработки выдаёт:

«Searching for DFU device [1EAF:0003]…
Assuming the board is in perpetual bootloader mode and continuing to attempt dfu programming. »

И больше ничего не происходит, попробуйте в этот момент перезагрузить плату клацнув кнопку ресет. По аналогии это как с Arduino Pro Mini.

А теперь про «ложку дёгтя», о которой я писал вначале статьи, почему-то не всегда получается прошить плату в среде разработки, даже больше, она не всегда определяется компьютером. Я для себя это решил следующим образом, перед тем как загрузить прошивку(перед нажатием кнопки «Вгрузить»), клацаю «Reset» на плате, и после прошивки, ещё раз перезагружаю плату. В этом случае процент вероятности, что плата прошьется, равен 99%. Непонятно почему работает именно так, но факт. Думаю, что рано или поздно этот косяк поправят, и всё будет автоматом перезагружаться как нужно. А чтобы это быстрее поправили, надо чтобы комьюнити этой замечательной STM32 отладочной платы росла, поэтому делитесь этой статьей с друзьями, особенно с друзьями программистами.

По поводу распиновки:

Лучшее что мне удалось найти, это распиновка самого микроконтроллера(открывайте в новой вкладке):

К порту нужно обращаться по полному имени, например:

digitalWrite(PB0, LOW);
analogWrite(PA8, 65535);pwmWrite(PA8, 65535);
analogRead(PA0);
LiquidCrystal lcd(PB0, PA7, PA6, PA5, PA4, PA3);

Ещё рекомендую зайти на сайт docs.leaflabs.com/docs.leaflabs.com/index.html там есть много чего интересного по теме программирования в Arduino IDE, правда на английском языке.

Я порылся в файлах ядра, и нашёл один интересный файл:
Documents\Arduino\hardware\Arduino_STM32\STM32F1\variants\generic_stm32f103c\board.cpp

Там прописаны все порты, которые поддерживают:

  • ШИМ, то есть функция analogWrite();pwmWrite(); — PB0, PA7, PA6, PA3, PA2, PA1, PA0, PB7, PB6, PA10, PA9, PA8, а это далеко не все, которые размечены на распиновке чипа;
  • АЦП, аля analogRead(); — PB0, PA7, PA6, PA5, PA4, PA3, PA2, PA1, PA0.

Так что имейте это ввиду. Хотя этого более чем достаточно от платы, стоимостью в 1.9 доллара.

Ещё заметил, что пины PA12/PA11 подключены к D+/D- USB, их лишний раз лучше вообще не трогать, ибо чуть что, на кону не 2-х долларовый кусок стеклотекстолита с чипом, а материнская плата компьютера.

Источник

You may also like...